
Jeff Hammond
Exascale CoDesign, Data Center Group, Intel Corporation

Acknowledgements: Michael Klemm, Tim Mattson, Rob van der Wijngaart, Alex Duran, Jim Cownie,
Alexey Kukanov, Mike Kinsner, Ben Ashbaugh, NWChem team at PNNL,
Tom Scoglund and the rest of the RAJA team at LLNL, CodePlay SYCL team, …

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Notices and Disclaimers
© 2018 Intel Corporation. Intel, the Intel logo, Xeon and Xeon logos are trademarks of Intel Corporation in the U.S. and/or other countries
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. . Performance
varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at
intel.com/performance/datacenter.
Some results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational
purposes. Any differences in your system hardware, software or configuration may affect your actual performance.
The cost reduction scenarios described are intended to enable you to get a better understanding of how the purchase of a given Intel based product, combined
with a number of situation-specific variables, might affect future costs and savings. Circumstances will vary and there may be unaccounted-for costs related to
the use and deployment of a given product. Nothing in this document should be interpreted as either a promise of or contract for a given level of costs or cost
reduction.
Intel processors of the same SKU may vary in frequency or power as a result of natural variability in the production process.
All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and
roadmaps.
For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.
Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision
#20110804.
Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as
"Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may
cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including
the performance of that product when combined with other products. For more information go to www.intel.com/benchmarks
*Other names and brands may be claimed as the property of others.

http://www.intel.com/benchmarks
http://www.intel.com/benchmarks

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Additional Disclaimer

I am not an official spokesman for any Intel products. I do not
speak for my collaborators, whether they be inside or outside
Intel.
I work on system pathfinding and workload analysis, not
software products. I am not a developer of Intel software tools.
You may or may not be able to reproduce any performance
numbers I report, but the code is on GitHub and I will provide
anything else you need to attempt to reproduce my results.
Hanlon’s Razor (blame stupidity, not malice).

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Outline

• Background and context
• Parallel Research Kernels
• C++ parallelism
• NWChem and experiences with OpenMP

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• To MPI or not to MPI…

• One-sided vs. two-sided?

• Does your MPI/PGAS need a +X?

• Static vs. dynamic execution model?

• What synchronization motifs
maximize performance across scales?

Application programmers can afford to
rewrite/redesign applications zero to one
times every 20 years…

HPC software design challenges (2014)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Intranode parallelism is growing
much fast than internode…

• Intranode parallelism is far more
diverse than internode parallelism.

• After ~20 years, internode behavior is
converged to some subset of MPI-3.

• Big Cores, Little Cores, GPU, FPGA all
require (very) different programming
models.

HPC software design challenges (2018)

How do we maximize productivity+performance+portability?How do we measure productivity+performance+portability?

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Standard methods

• NAS Parallel Benchmarks

• Mini Applications
(e.g. Mantevo, LULESH)

• HPC Challenge

There are numerous examples of
these on record, covering a wide range
of programming models, but is source
available and curated?

What is measured?

• Productivity (?), elegance (?)

• Implementation quality
(runtime or application)

• Asynchrony/overlap

• Semantics:

• Automatic load-balancing (AMR)

• Atomics (GUPS)

• Two-sided vs. one-sided, collectives

Programming model evaluation

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Goals of the Parallel Research Kernels
1. Universality: Cover broad range of performance critical application patterns.

2. Simplicity: Concise pencil-and-paper definition and transparent reference
implementation. No domain knowledge required.

3. Portability: Should be implementable in any sufficiently general
programming model.

4. Extensibility: Parameterized to run at any scale. Other knobs to adjust
problem or algorithm included.

5. Verifiability: Automated correctness checking and built-in performance
metric evaluation.

6. Hardware benchmark: No! Use HPCChallenge, Xyz500, etc. for this.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Dense matrix transpose
• Synchronization: global
• Synchronization: point to point
• Scaled vector addition
• Atomic reference counting
• Vector reduction
• Sparse matrix-vector multiplication
• Random access update
• Stencil computation
• Dense matrix-matrix multiplication
• Branch
• Particle-in-cell

Outline of PRK Suite

tra
nsp

ose

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1

Star-
shaped
stencil

Static kernels

A B C+= + S *

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Language Seq. OpenMP MPI PGAS Threads Others?

C89 √ √ Many SHMEM

C99/C11 √ √√√ UPC √ Cilk, ISPC

C++17 √ √√√ Grappa √

Kokkos, RAJA, TBB,
PSTL, SYCL,

Boost.Compute,
OpenCL, CUDA…

Fortran √ √√√ coarrays “pretty”, OpenACC

Python √ Numpy
Chapel √ √

√√√ = Traditional, task-based, and target are implemented identically in Fortran, C and C++.

Additional language support includes Rust, Julia, and Matlab/Octave.

https://github.com/ParRes/Kernels

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

for i in range(1,m):
for j in range(1,n):

A[i][j] = A[i-1][j]
+ A[i][j-1]
- A[i-1][j-1]

A[0][0] = -A[m-1][n-1]

• Proxy for discrete ordinates
neutron transport; much simpler
than SNAP or Kripke.

• Proxy for dynamic programming,
which is used in sequence
alignment (e.g. PairHMM).

• Wraparound to create dependency
between iterations.

Synch point-to-point

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

B[2:n-2,2:n-2] += W[2,2] * A[2:n-2,2:n-2]
+ W[2,0] * A[2:n-2,0:n-4]
+ W[2,1] * A[2:n-2,1:n-3]
+ W[2,3] * A[2:n-2,3:n-1]
+ W[2,4] * A[2:n-2,4:n-0]
+ W[0,2] * A[0:n-4,2:n-2]
+ W[1,2] * A[1:n-3,2:n-2]
+ W[3,2] * A[3:n-1,2:n-2]
+ W[4,2] * A[4:n-0,2:n-2]

• Proxy for structured mesh
codes. 2D stencil to
emphasize non-compute.

• Supports arbitrary radius
star and square stencils via
code generator for C11 and
C++ models, which was
inspired by OpenCL.

Stencil

Star-
shaped
stencil

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

for i in range(order):
for j in range(order):

B[i][j] += A[j][i]
A[j][i] += 1.0

• Proxy for 3D FFT, bucket sort…

• Local transpose of square tiles
supports blocking to reduce TLB
pressure.

Transpose

tra
nsp

ose

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

I study molecular dynamics, but to tell the
truth I am interested more in the dynamics
than in the molecules, and I care most about
questions of principle.

Phil Pechukas, Columbia University Chemical Physics Professor

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

I study C++ parallelism, but to tell the truth I
am interested more in the parallelism than
in the C++, and I care most about questions
of practice.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Why C++ parallelism?

• C++ is a kitchen sink language – it has pretty much every feature that exists
in programming languages (other than simplicity and orthogonality).

• Used across essentially all markets/domains where parallelism or
performance matter.

• Fortran and Rust usage domain-specific.

• Interpreted languages do not satisfy performance requirements.

• C++ can be extended to do all sorts of things within the language itself.
Variadic templates for fun and profit!

• Mattson’s Law: No new languages!

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Overview of Parallel C++ models

• TBB (Intel OSS) - parallel threading abstraction for CPU*.

• KOKKOS (Sandia) – parallel execution and data abstraction for CPU and GPU
architectures (OpenMP, Pthreads, CUDA, …).

• RAJA (Livermore) – parallel execution for CPU and GPU architectures
(OpenMP, TBB, CUDA, …). CHAI adds GPU data abstraction.

• PSTL (ISO standard) – parallel execution abstraction for CPU architectures;
designed for future extensions for GPU, etc. (e.g. Thrust and HPX).

• SYCL (Khronos standard) - parallel execution and data abstraction that
extends the OpenCL model (supports CPU, GPU, FPGA, …).

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

New Stuff (5)

Tasks (3,4), Taskloop (4)
Target-Teams-Distribute (4)

SIMD (4)
Atomics (3)

Parallel, For, Sections,
Single, Critical, Flush,

Barrier (2)

OpenMP

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

sync
okay

sync

OpenCL 2 is a bit more
complicated, but doesn’t change

the execution model.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SYCL

• Khronos standard based on C++11 and OpenCL.

• Retains the OpenCL execution model: work_groups + work_items.

• May require extensions for SIMD exec to support forward deps.

• Single-source programming model (may be >1 compiler passes).

• Eliminates the painful boilerplate code associated with OpenCL.

• OpenCL interoperability (e.g. OpenCL linear algebra libraries).

All experiments use the CodePlay* ComputeCpp implementation based on
Clang/LLVM that generates SPIR-V.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Model for forN reduce scan Hierarchy/Composition
TBB::parallel Y Y Y Y Threads
C++17 PSTL Y N^ Y Y Threads+SIMD; new?
RAJA Y Y Y Y Threads+SIMD; CUDA
KOKKOS Y Y Y Y Team+Thread+SIMD
Boost.Compute Y N*^ Y Y N
SYCL Y 3 N N Group(+Subgroup)+Item
OpenCL 1.x Y 3 N N Group+Item
OpenMP 5 Y Y Y Y Y**

* Boost.Compute supports embedded OpenCL, which in turn exposes 3D loop nests.
** OpenMP nested parallelism is unpleasant. You can nest “parallel for” or switch paradigms

to “taskloop” and give up on accelerator support.
^ One can always implement a collapsed N-d loop but that adds div/mod to loop body.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• TBB

• Nested, blocked forall w/ affinity
control and load-balancing

• RAJA

• Nested, blocked, permuted forall w/
fine-grain policy control.

• KOKKOS

• Nested, blocked, permuted forall.

• C++17 (parallel STL)

• Parallel STL evolving towards GPU etc.

• Boost.Compute

• Effectively parallel STL over OpenCL.

• SYCL

• OpenCL execution model

• Parallel STL over SYCL exists.

HPC-like vs STL-like vs OpenCL-like

STL-like

OpenCL-like

HPC-like

The HPC-like models capture the popular OpenMP idioms while hiding complexity.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

https://github.com/ParRes/Kernels/tree/master/Cxx11

Star-
shaped
stencil

https://github.com/ParRes/Kernels/tree/master/Cxx11

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Please contact the author if you are interested in
performance data produced by the PRKs.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

// sequential C implementation
for (int i=1; i<m; ++i) {

for (int j=1; j<n; ++j) {
A[i][j] = A[i-1][j] + A[i][j-1] - A[i-1][j-1];

}
}

This pattern appears in a range of applications:
• Deterministic neutron transport (DOE-NNSA mission science)
• Smith-Waterman/PairHMM (bioinformatics)
• Dynamic programming
• Linear algebra (e.g. NAS LU benchmark)

Wavefront Parallelism

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Changing the iteration space exposes parallelism

Sequential

Sequential

I-loop goes to the right,
J-loop goes down

Sequential

Pa
ra

lle
l

Loop over anti-diagonals
(see next slide)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

// sequential loop
for (int i=2; i<=2*n-2; ++i) {

int start = max(2,i-n+2);
int stop = min(i,n);
#pragma omp for simd
for (int j=start; j<=stop; ++j) {

const int x = i-j+1;
const int y = j-1;
A[x][y] = A[x-1][y]

+ A[x][y-1]
- A[x-1][y-1];

}
// implicit barrier (required)

}

OpenMP inner-loop parallelism

• Very low parallel efficiency once
data spills private cache.

• CPU SIMD doesn’t work because
data access is non-contiguous.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Sequential execution requires no
synchronization.

• Formally, there are O(n2) element-wise
dependencies.

• Antidiagonal implementation uses O(n)
barriers to enforce deps.

• Hyperplane amortizes barriers across many
antidiagonals: O(n/unroll) barriers.

• Task-based has O(n2/block2) dependencies.

Amortizing synchronization overheads

sequential sweep

Parallel loop

Task dependency

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#pragma omp parallel
for (int i=2; i<=2*(nb+1)-2; i++) {

#pragma omp for
for (int j=std::max(2,i-(nb+1)+2); j<=std::min(i,nb+1); j++) {

const int ib = nc*(i-j)+1;
const int jb = nc*(j-2)+1;
for (int ii=ib; ii<std::min(m,ib+nc); ii++) {

for (int jj=jb; jj<std::min(n,jb+nc); jj++) {
A[ii][jj] = A[ii-1][jj] + A[ii][jj-1] - A[ii-1][jj-1];

}
}

}
}

OpenMP hyperplane parallelism

This is only implemented for square grids to keep the polyhedral arithmetic simpler.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#pragma omp parallel
#pragma omp master
for (int i=1; i<m; i+=mc) {

for (int j=1; j<n; j+=nc) {
#pragma omp task depend(in:grid[i-mc][j],grid[i][j-nc]) \

depend(out:grid[i][j])
for (int ii=i; ii<std::min(m,i+mc); ii++) {

for (int jj=j; jj<std::min(n,j+nc); jj++) {
A[ii][jj] = A[ii-1][jj] + A[ii][jj-1] - A[ii-1][jj-1];

}
}

}
}
#pragma omp taskwait

OpenMP task-based parallelism

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#pragma omp for collapse(2) ordered(2)
for (int i=0; i<ib; i++) {

for (int j=0; j<jb; j++) {
#pragma omp ordered depend(sink: i-1,j) depend(sink: i,j-1)
for (int ii=i; ii<std::min(m,i+mc); ii++) {

for (int jj=j; jj<std::min(n,j+nc); jj++) {
A[ii][jj] = A[ii-1][jj] + A[ii][jj-1] - A[ii-1][jj-1];

}
}
#pragma omp depend(source)

}
}

OpenMP “doacross” parallelism

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1

The Intel OpenMP already has an improved
implementation of this feature…

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Summary

• Parallel C++ effectively hides the complexity of underlying models like
OpenMP and OpenCL without introducing any overhead (on CPUs).

• Implementation differences between OpenMP and TBB schedulers show
places where OpenMP runtimes can be improved.

• PSTL (based on TBB in Intel’s implementation) works well on CPUs but is
limited by STL semantics. PSTL portability requires evolution of C++ towards
HPX, Thrust…

• SYCL provides a modern C++ abstraction and single-source compilation on
top the OpenCL execution model.

• Task-based parallelism has a good ROI for wavefront algorithms.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Suite of computational chemistry functionality:
• From classical MD to AO DFT … MP2 to CCSD…
• Multi-scale: QM/MM, embedding
• NWPW: AIMD code based on MPI

• Massively parallel design for HPC systems circa ~2000.
• Process-based parallelism in Global Arrays
• Modular design to enable reuse of integrals, SCF, etc.
• Object-oriented design in legacy Fortran
• Threading from BLAS/LAPACK (until recently)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Weak-scaling
More compute resources to

solve a larger problem.

Strong-scaling
More compute resources to solve

the same problem in less time.

Throughput
More compute resources

to solve more of the
same problem.

High-accuracy
benchmarking

Accurate
thermochemistry

Ab initio
molecular
dynamics

Materials
Genome
Project

Method
Development

Umbrella sampling,
metadynamics

Accurate
properties

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Overview of CCSD(T)

HF-SCF
N2-4 compute
N2 storage

4-index trans.
N5 compute
N4 storage

CCSD
N6 compute
N4 storage

(T)
N7 compute
N4 storage

Bottlenecks
Atomic integrals

Parallel Eigensolver
Small messages

Bottlenecks
Atomic integrals

BW-limited kernels
High comm. volume

Bottlenecks
Async. comm.

Load imbalance
Small BLAS

Bottlenecks
One-sided gather

8-way DGEMM
Matrix reduction (local)

Solution
Reduce process count

Schedule comm. (PNNL)

Solutions
Casper (Min Si)

IE-DLB (Dave Ozog)
Coarse OpenMP

Solutions
Non-blocking comm.

Coarse OpenMP

This step is
negligible in the

context of CCSD(T)…

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

OpenMP tradeoffs
+ OpenMP is the only (portable) threading model we can use with Fortran.

+ Threads ameliorate memory capacity issues. Replicated data eliminates
communication bottlenecks in irregular algorithms (e.g. Fock build).

+ Reducing the process count improves scalability of communication-intensive
steps (e.g. global transpose).

+ Increasing compute per process decreases in-cast problem of DLB.

- Reduces parallelism because NWChem is fully process-parallel but OpenMP
coverage is limited.

- Work/data decomposition not designed with threads in mind.

- Essential components of NWChem are not thread-safe L

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Semi-direct CCSD(T) optimizations

(T) Is ~80% of the total time for large jobs…

1. (T): Make all Get operations nonblocking.

2. (T): Manually inline subroutines and implement one fork-join per iteration.

3. (T): Improve compute intensity in exchange for infrequent extra work (<1%)

4. CCSD: thread all the important loops.

5. CCSD: fuse parallel regions as much as possible.

OpenMP coverage limited by thread-unsafe atomics integral routines.
We use OpenMP mutual exclusion for all GA calls.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Triples performance

1001
949

1110
1079

1129

415

319 299

376 371
417

364 378 368 368

109 108 125 126

227

0

200

400

600

800

1000

1200

8 4 2 1 N/A

tim
e

(s
ec

on
ds

)

OpenMP threads

trpdrv trpmos doxxx tengy

(H2O)7 with cc-pVTZ (406 basis functions)
Xeon Platinum 8180 processors (2x28)
Omni Path interconnect, local SSD scratch
Intel Fortran, C/C++, MKL (2018.2.199)

4 nodes, 56 cores active (MPI = 56/OpenMP)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Lessons learned

• (T) can run with 8x fewer processes without losing efficiency.

• CCSD does not benefit from OpenMP for problem sizes considered.

• The conversion of (T) from OpenMP host to target was mechanical for KNC.

• Focused on Xeon Phi coprocessors so performance optimization is more
similar to host code than in other cases.

• Semidirect code aligned with traditional OpenMP usage but TCE CCSD is
implicitly task-based and will use OpenMP tasks (compiler support limited).

• Thread-safe GA/ARMCI is essential. Localizing the mutual exclusion of GA
calls is painful. (ARMCI-MPI can be thread-safe; PNNL GA/ARMCI is WIP)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

References
• R. F. Van der Wijngaart, A. Kayi, J. R. Hammond, G. Jost, T. St. John, S.

Sridharan, T. G. Mattson, J. Abercrombie, and J. Nelson. ISC 2016. Comparing
runtime systems with exascale ambitions using the Parallel Research Kernels.

• E. Georganas, R. F. Van der Wijngaart and T. G. Mattson. IPDPS 2016. Design
and Implementation of a Parallel Research Kernel for Assessing Dynamic
Load-Balancing Capabilities.

• R. F. Van der Wijngaart, S. Sridharan, A. Kayi, G. Jost, J. Hammond, T.
Mattson, and J. Nelson. PGAS 2015. Using the Parallel Research Kernels to
study PGAS models.

• R. F. Van der Wijngaart and T. G. Mattson. HPEC 2014. The Parallel Research
Kernels.

